225 research outputs found

    Reframing the land-sparing/land-sharing debate for biodiversity conservation

    Get PDF
    Conservation biologists are devoting an increasing amount of energy to debating whether land sparing (highyielding agriculture on a small land footprint) or land sharing (low-yielding, wildlife-friendly agriculture on a larger land footprint) will promote better outcomes for local and global biodiversity. In turn, concerns are mounting about how to feed the world, given increasing demands for food. In this review, I evaluate the land-sparing/landsharing framework-does the framework stimulate research and policy that can reconcile agricultural land use with biodiversity conservation, or is a revised framing needed? I review (1) the ecological evidence in favor of sparing versus sharing; (2) the evidence from land-use change studies that assesses whether a relationship exists between agricultural intensification and land sparing; and (3) how that relationship may be affected by socioeconomic and political factors. To address the trade-off between biodiversity conservation and food production, I then ask which forms of agricultural intensification can best feed the world now and in the future. On the basis of my review, I suggest that the dichotomy of the land-sparing/land-sharing framework limits the realm of future possibilities to two, largely undesirable, options for conservation. Both large, protected regions and favorable surrounding matrices are needed to promote biodiversity conservation; they work synergistically and are not mutually exclusive. A "bothand" framing of large protected areas surrounded by a wildlife-friendly matrix suggests different research priorities from the "either-or" framing of sparing versus sharing. Furthermore, wildlife-friendly farming methods such as agroecology may be best adapted to provide food for the world's hungry people

    Pollinator Community Assembly Tracks Changes in Floral Resources as Restored Hedgerows Mature in Agricultural Landscapes

    Get PDF
    Intensive agriculture reduces wild pollinator abundance, diversity and pollination services, while depending critically on wild pollinators for crop pollination. Floral enhancements such as hedgerows (native, perennial flowering trees and shrubs) can enhance pollinator colonization, persistence, occupancy, and species richness within intensive agricultural landscapes. However, little is known about the specific features of hedgerows that promote pollinator communities in such landscapes. Understanding how pollinator communities respond to local changes in site conditions as hedgerows mature, such as the availability of floral or nesting resources, can help guide the design of more effective hedgerows that promote pollinators and/or pollination services. In an intensively-managed agricultural region of California, we found that pollinator community attributes responded principally to the enhancement of floral diversity as hedgerows mature, as well as to surrounding natural habitat. Once hedgerows matured, this relationship leveled off, suggesting either saturation of community assembly processes, or greater importance of floral density/display relative to diversity. Although we did not find any relationships between measures of pollinator community diversity and nesting resources, such resources are notably difficult to measure. Surrounding natural habitat also affected species and functional richness at hedgerows, particularly for solitary bees that nest above ground. Such species are known to be particularly sensitive to the negative effects of agriculture. Thus, hedgerows in combination with natural habitat may reverse some of the community disassembly provoked by intensive agriculture

    Hedgerows enhance beneficial insects on adjacent tomato fields in an intensive agricultural landscape

    Full text link
    Within-farm habitat enhancements such as hedgerows could aid pest control in adjacent crops; however, there is little information on whether small-scale restoration impacts pests and natural enemies, and crop damage, and how far effects may extend into fields. We compared restored, California native perennial hedgerows to unenhanced field edges consisting of commonly occurring semi-managed, non-native weeds. Pest and natural enemy communities were assessed in both edge types and into adjacent processing tomato fields. Using sentinel pest eggs, pest control was quantified, and pest pressure and crop damage was compared between field types. Economically-important pests were fewer and parasitoid wasps were more abundant in hedgerows than weedy crop edges. There was no difference in predatory arthropod abundance between edge types, but there was greater predator richness in hedgerow than weedy edges. Predatory lady beetles were more abundant and aphids were lower in fields with hedgerows, up to 200. m into fields, the maximum extent of observations. Fewer of the fields adjacent to hedgerows reached threshold pest levels requiring insecticide application. Benefits of hedgerows to pest control from parasitism extended to 100. m but not 200. m into fields. Farm-scale hedgerow restoration can provide pest control benefits up to 100 or 200. m into fields and multiple hedgerows around fields could enhance pest control throughout entire fields, reducing the need for chemical pest control. © 2014 Published by Elsevier B.V

    A horizon scan of future threats and opportunities for pollinators and pollination

    Get PDF
    Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1) corporate control of global agriculture, (2) novel systemic pesticides, (3) novel RNA viruses, (4) the development of new managed pollinators, (5) more frequent heatwaves and drought under climate change, and (6) the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations

    Contribution of Pollinator-Mediated Crops to Nutrients in the Human Food Supply

    Get PDF
    The contribution of nutrients from animal pollinated world crops has not previously been evaluated as a biophysical measure for the value of pollination services. This study evaluates the nutritional composition of animal-pollinated world crops. We calculated pollinator dependent and independent proportions of different nutrients of world crops, employing FAO data for crop production, USDA data for nutritional composition, and pollinator dependency data according to Klein et al. (2007). Crop plants that depend fully or partially on animal pollinators contain more than 90% of vitamin C, the whole quantity of Lycopene and almost the full quantity of the antioxidants β-cryptoxanthin and β-tocopherol, the majority of the lipid, vitamin A and related carotenoids, calcium and fluoride, and a large portion of folic acid. Ongoing pollinator decline may thus exacerbate current difficulties of providing a nutritionally adequate diet for the global human population

    Working landscapes need at least 20% native habitat

    Get PDF
    International agreements aim to conserve 17% of Earth's land area by 2020 but include no area‐based conservation targets within the working landscapes that support human needs through farming, ranching, and forestry. Through a review of country‐level legislation, we found that just 38% of countries have minimum area requirements for conserving native habitats within working landscapes. We argue for increasing native habitats to at least 20% of working landscape area where it is below this minimum. Such target has benefits for food security, nature's contributions to people, and the connectivity and effectiveness of protected area networks in biomes in which protected areas are underrepresented. We also argue for maintaining native habitat at higher levels where it currently exceeds the 20% minimum, and performed a literature review that shows that even more than 50% native habitat restoration is needed in particular landscapes. The post‐2020 Global Biodiversity Framework is an opportune moment to include a minimum habitat restoration target for working landscapes that contributes to, but does not compete with, initiatives for expanding protected areas, the UN Decade on Ecosystem Restoration (2021–2030) and the UN Sustainable Development Goals

    Evidence synthesis as the basis for decision analysis: a method of selecting the best agricultural practices for multiple ecosystem services

    Get PDF
    Agricultural management practices have impacts not only on crops and livestock, but also on soil, water, wildlife, and ecosystem services. Agricultural research provides evidence about these impacts, but it is unclear how this evidence should be used to make decisions. Two methods are widely used in decision making: evidence synthesis and decision analysis. However, a system of evidence-based decision making that integrates these two methods has not yet been established. Moreover, the standard methods of evidence synthesis have a narrow focus (e.g., the effects of one management practice), but the standard methods of decision analysis have a wide focus (e.g., the comparative effectiveness of multiple management practices). Thus, there is a mismatch between the outputs from evidence synthesis and the inputs that are needed for decision analysis. We show how evidence for a wide range of agricultural practices can be reviewed and summarized simultaneously (“subject-wide evidence synthesis”), and how this evidence can be assessed by experts and used for decision making (“multiple-criteria decision analysis”). We show how these methods could be used by The Nature Conservancy (TNC) in California to select the best management practices for multiple ecosystem services in Mediterranean-type farmland and rangeland, based on a subject-wide evidence synthesis that was published by Conservation Evidence (www.conservationevidence.com). This method of “evidence-based decision analysis” could be used at different scales, from the local scale (farmers deciding which practices to adopt) to the national or international scale (policy makers deciding which practices to support through agricultural subsidies or other payments for ecosystem services). We discuss the strengths and weaknesses of this method, and we suggest some general principles for improving evidence synthesis as the basis for multi-criteria decision analysis
    corecore